
Science Operations Interfaces for Mars Surface
Exploration

Jeffrey S. Norris, Mark W. Powell, Jason M. Fox, Kenneth J. Rabe, I-Hsiang Shu
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, CA 91109

Jeff.Norris, Mark.Powell, Jason.Fox, Kenneth.Rabe, I-Hsiang.Shu@jpl.nasa.gov

Abstract – The Science Activity Planner (SAP) is the
science planning tool used for the Mars Exploration Rover
(MER) mission. This paper begins with an overview of the
software developed for MER and how it was used for
science downlink analysis and activity planning. The
overview of SAP is then followed by a report on a number
of new development efforts that aim to improve on the
capabilities of SAP for future missions. The selected areas
discussed herein include the application of geographical
information systems in tactical downlink analysis, new
strategies for distributed data access and planning
support, a virtual field test capability to support “what
if?” scenarios for new technologies and mission concepts,
and the use of agile development methods to improve the
development of Mars surface mission support software as
a whole.

Keywords: Science activity planning, spatial databases,
distributed operations, virtual field testing, agile
development

1 The Science Activity Planner

 Figure 1. The Science Activity Planner with Downlink

Browser in foreground, Uplink Browser in background [1].

 The science planning tool for the Mars Exploration
Rover Mission is the Science Activity Planner (SAP),
shown in Figure 1. SAP assists the Athena Science Team
and their collaborators in two main areas: downlink data
analysis and science activity specification. Downlink
analysis begins with viewing images and other data
products, followed by the interactive specification of new

science targets and activities. The image views provide a
contextual awareness for the scientist where they
interactively specify new activities for the spacecraft and
its instruments.

1.1 Downlink Analysis
 On each sol (Martian day) of operations, data arrives
from the rover and is processed by the Multi-mission
Image Processing Lab (MIPL) pipeline to produce data
product files. These products include images and spectra
along with metadata describing the state of the rover when
the products were acquired. A SAP user chooses the
products he/she wishes to view and arranges them as panes
in a reconfigurable data visualization area called the
Viewgrid (shown in the foreground of Figure 1.). Users
can configure the number and relative sizes of Viewgrid
panes in order to suit their needs, or add additional pages to
the Viewgrid if more space is needed. The Viewgrid
enables the user to display numerous data products
simultaneously without the visual clutter that would result
from a multiple window system.

 Images acquired by the rover can be viewed in a
variety of ways in SAP as shown in Figure 2. Individual
images from the rover’s mast cameras can be combined
into a collection that SAP will warp together on the fly to
produce a panorama image. These panoramas can also be
viewed in an overhead polar projection or an immersive 3D
view that allows a user to position a virtual camera within
the scene.

 SAP provides basic image viewing features such as
zooming and panning and image processing features such
as high pass, low pass, and edge detection filters. SAP also
provides a set of image analysis features that are tailored
the particular needs of the mission science team. For
instance, scientists use the color information returned by
the Pancam instrument to assess the expected relative
abundances of important minerals. SAP users can perform
this kind of analysis by creating synthetic color images
using arithmetic functions based on the available bands of
an image. SAP also includes a hyperspectral visualization
tool called the ImageCube that allows a user to analyze the
rich dataset returned from the Miniature Thermal Emission
Spectrometer (Mini-TES) instrument.

Figure 2. Cylindrical (top), polar-azimuthal (bottom-left),
and 3D (bottom-right) renderings of a mosaic of images

acquired by Opportunity [1].

 When a SAP user selects an image to view, SAP also
loads range data derived through stereo correlation. When
a user clicks on a point in the image, this data is accessed
and the user is presented with the position of that point
relative to the rover in Cartesian and spherical coordinates.
This range data can also be overlaid on the image as a
color-coded elevation or range map. Images taken of the
area immediately in front of the rover with the front Hazard
Avoidance Cameras (Hazcams) are also accompanied by
reachability maps indicating where the rover’s arm can be
safely deployed. SAP enables its users to overlay this
information to allow them to select suitable locations for
in-situ measurements.

1.2 Activity Plan Creation
 SAP users transition from analyzing data received
from the rover to planning new rover actions by using SAP
to mark locations of interest. There are two types of these
markers. Features are used to indicate objects of interest
such as a boulder, a patch of sand, or a distant hill. Targets
are used to indicate a specific location within a Feature and
can be used as parameters in an activity. For instance, a
scientist might create a Feature to name a rock “Pumpkin”
and then create a Target called “Stem” near the top.
Features and Targets are rendered in all SAP views and are
immediately shared with all other SAP users to ensure that
scientists don’t create Features or Targets with conflicting
names.

 After creating Features and Targets, a scientist
switches to the SAP Uplink Browser (shown in the
background of Figure 1) in order to create Activities for the
rover to accomplish. Each Activity added to a plan is

drawn from a predetermined set of Activity types. For
example, one Activity type is used to drive the rover while
another is used to take a picture with the rover’s navigation
cameras. Once an Activity has been added to the plan, the
user can customize its execution by adjusting the values of
its parameters. The Activity used to request use of the
Microscopic Imager instrument allows the user to indicate
the point that should be imaged (typically a previously
created Target), desired compression ratios, the priority of
the data that will be acquired, and so forth.

 Activity plans for Spirit and Opportunity are
constructed in a series of meetings. On each sol, SAP is
initially used by individual users who construct fragments
of plans as Activities and Observations. These users meet
in small Science Theme Groups that are responsible for
integrating these fragments into a plan that reflects their
particular scientific interests. Next, representatives of each
science theme group meet in a large meeting called the
Science Operations Working Group. This meeting is
responsible for integrating the plans from each theme
group into a single, authoritative plan for the next sol. This
plan is refined further before it is transmitted to the
spacecraft. At each step in this process, less suitable
Observations and Activities are discarded and the surviving
elements are prioritized to reflect their relative importance
to the operations team.

 SAP is designed to support this process of iterative
integration and prioritization. The Uplink Browser contains
a ViewGrid that is similar to the ViewGrid that exists for
viewing images that was described above. By subdividing
the Uplink Browser ViewGrid, a user can load several
plans simultaneously and merge them by dragging and
dropping Activities between them. This also allows users
to refer to previous plans and reuse portions of them in new
plans.

1.3 Simulation
 SAP also enables a scientist to simulate the expected
effects of an activity plan. Critical feedback includes the
amount of power, data volume, and time the plan will
require, as well as the expected final position of the rover
and the instrument arm. SAP also draws an “image
footprint” on top of all image displays to indicate the
region that is expected to be imaged by an Activity. All of
this feedback enables a user to adjust the plan until it
reflects his/her intent.

 SAP employs an efficient approach to plan simulation
in order to provide this feedback to the user in a timely
manner. As the user constructs a plan, SAP maintains a
sophisticated dependency graph that keeps track of exactly
which Activity parameters will impact particular spacecraft
states. This dependency graph allows SAP to determine
exactly which parts of a plan need to be simulated when a

parameter is modified. In practice, only a small portion of
the plan is affected by any particular parameter change, so
this dependency-based approach to resource modeling
provides SAP a tremendous performance boost. SAP is
able to simulate the effects of most changes
instantaneously, providing the user immediate feedback
and improving their planning efficiency immensely.

1.4 Building on SAP: Maestro

SAP was successful as a science analysis and planning
tool. After its initial deployment in support of the MER
nominal mission, we dubbed the next version of the
software “Maestro”. We are now adding new capabilities
to Maestro to further increase the efficiency of scientists
for MER and future rover missions. The areas we are
currently focusing on are geographic information systems,
distributed operations, virtual field tests, and agile
development. We will explore each of these areas in
further detail in the following sections.

2 Geographic Information Systems
 A Mars rover mission such as MER collects images at
an ever-increasing number of different sites on the
planetary surface. The current state of the art in data
browsing tools used in rover operations presents an image
catalog in one of two organizational strategies. The first
strategy is a temporally-ordered image catalog, where
images are organized in a hierarchy based on time of
acquisition. SAP and most current operations tools fall into
this category. The other type of organization that has been
used in operations is round-trip data tracking. This type of
tracking produces a correlation between each image
product and the spacecraft activity that was executed to
acquire the image. Based on this correlation, an activity
planner can review which activities have results received in
full, in part, or not at all.

2.1 Spatial Indexing
 Spatial data indexing applied to Mars rover images
and science data products adds a useful new cataloging
modality for tactical data analysis. Spatial indexing of
image products can serve to visually indicate where on the
surface the products were acquired. An orbital image that
covers a significant area of the rover’s traverse path can be
annotated with the locations where surface images were
captured. Queries for images can be expressed in terms of
the location on the surface where they were acquired, using
both the rover’s traverse path and the contextual surface
features that are visible in the orbital image. The
combination of these capabilities results in a map-like user
interface that is highly intuitive (based on a person’s prior
experience using maps), especially to the scientist-activity-
planner whose training is in geology. To the geologist,
using a map to place in situ observations and other results
into a larger regional context is a fundamental tool of field

work, and field geologists represent a large segment of the
user community of operations interfaces for planetary
rovers.

 For each data product acquired, a Mars rover records
its position and attitude at the time of acquisition. This
information is part of the image metadata that is returned
with the image in the downlink. As the rover moves
through different locations on the surface, this set of
locations is recorded and converted to a chain of coordinate
frames, where each new frame is defined relative to the
previous frame. The rover’s current position relative to the
landing position at the start of the mission is obtained by
concatenating all of the coordinate transformations back to
the landing location. However, we would like to have a
precise location of all of these rover positions in absolute
coordinates on the surface, not merely lander-relative
coordinates. New high-resolution orbital cameras such
Mars Express’ High Resolution Camera (HRC), and new
techniques for acquiring high resolution imagery using
older orbital cameras such as the Image Motion
Compensation demonstrated recently with the Mars Global
Surveyor’s Mars Orbital Camera (MOC) can accurately
locate landers such as the Mars Exploration Rover’s
landing sites at Gusev Crater and Meridiani Planum. Such
high-resolution images provide an absolute geospatial
reference for the lander position, and all of the relative
coordinate frames along the rover’s traverse path can
likewise be determined in absolute coordinates by
concatenating the frame information. In this way we
compute the 3D and latitude-longitude location of every
rover position on the surface.

2.2 Spatial Databases
 A spatial database is the foundation of a Geographical
Information Server or GIS. With a GIS database, SQL
queries are used to insert, update, and select entries in a
relational database that can contain geometry information
in addition to standard types of data such as text and
numeric information. The types of geometry that a GIS
database can support may vary from a simple 2 or 3
dimensional point, to connected line segments or polygons.
For our implementation, we use several of types of
geometry: 3D points to represent locations where images
were acquired in x,y,z space, 2D points in latitude and
longitude coordinates to represent where on the planetary
sphere images were acquired, and a polyline to represent a
set of connected line segments with 3D endpoints that
represents the path of the rover’s traverse.

 For our implementation we chose to use the PostGIS
spatial database infrastructure. The PostGIS spatial
database has several advantages for supporting tactical
operations. It is freely-available, and has long been proven
capable of industrial application support. It is also open
source, which makes customization of the framework and

detailed understanding of the implementation
straightforward.

2.3 User Interface

Figure 3. The Maestro Orbital View. A MOC image of

Gusev Crater, Mars is shown, annotated with landmark and
rover traverse locations provided by GIS.

 The GIS user interface (see Figure 3) renders an
orbital image using a simple cylindrical map projection.
The image can be resized to any arbitrary scale using zoom
in/out controls. The image is annotated with a number of
useful landmarks. Users can outline and name new
landmarks of interest using a polygon drawing tool that
stores the landmark positions in a database. For supporting
rover missions, the rover traverse path is overlaid onto the
image as a connected series of line segments connecting all
of the waypoints along its traverse history. The rover’s
traverse path overlay is also labeled to indicate the numeric
designated of the major sites along the path. The labeling
uses a greedy algorithm that places as many labels as can
fit on the image to annotate the path while still remaining
legible, depending on the current zoom level of the image.
For image product queries, the user can click and drag a
rectangular region on the map to search for image products
that were acquired within that region on the surface. The
query is executed against the GIS database and the
resulting set of data products are presented to the user in a
result table. The GIS queries are highly efficient since the
PostGIS implementation maintains an R-tree data structure
to optimize spatial queries. As a data product is selected
from the query result set, its corresponding map location is
highlighted with an icon.

3 Distributed Operations
 Centralized operations worked initially for MER
because everyone was co-located in a single room for
planning. However, as the mission progressed beyond its
expected operational lifetime, support for distributed
operations was required as scientists returned to their home

institutions. This problem was addressed with development
of Remote SAP [2].

 Knowing that future Mars missions will likely have
operations lifetimes that will exceed the projected lifetimes,
planning for distributed operations is prudent. The two
features that are needed for distributed operations for
future missions are distributed planning and distributed
access to downlink data. By planning for distributed
operations at the beginning, we hope to avoid some of the
pitfalls and problems that were encountered during MER.

3.1 Distributed Planning
 In SAP, plans were stored on the local filesystem,
which is a non-ideal situation when working in a
distributed operations environment. Remote SAP still uses
local files to store plans, but has a manual procedure for
remote users to contribute to the master plan. While this
works for MER, this begs a more effective solution for
missions with longer operational lifetimes.

 In our recent efforts, we are now using a relational
database as the central point of contact for the storage and
distribution of plans. This has the advantages of
maintaining a single authoritative plan data store and
supports collaboration, allowing all contributors to submit
their pieces of a daily plan in an automated fashion. Using
a database also allows for more robust querying of
previous plans as queries can be built using any data
available in the database. This is an improvement over plan
querying in SAP, where the only available mechanism to
find any plan was through a rigid filesystem directory
hierarchy.

 We are using a technology called Hibernate to handle
the majority of the database interactions with a Postgres
relational database. We have been using Hibernate to
define the database schema and generate code for all or our
core model objects. We significantly enhanced the code
generation over the stock Hibernate code generation to
better support both Java 1.5 and common capabilities that
we have identified as being necessary for our development.

3.2 Remote Data Access
 For MER data was pushed out to the users by the File
Exchange Interface (FEI) data file subscription service.
Unfortunately, this method required significant investments
of storage for data that may be accessed at best
infrequently. To reduce the amount of data pushed out to
users, the Maestro team is adopting a plan to treat
downlink data more similarly to the web model.

 All downlink data products will be available through
a server. When a client attempts to access a data product,
the data product will be downloaded to the user’s machine
and stored locally. Having the data stored locally gives

significantly improved access times for the user.
Additionally, this model allows the ability to bring a new
collaborator into the project quickly without requiring the
user to have all the mission data.

 Storing the data on the user’s local disk carries with it
the logistical issues of synchronization, disk space
limitations, and local file system organization. Fortunately,
the first two problems are similar to the problems that have
been solved by web browsers. File creation/modification
timestamps can be checked to determine whether a file is
stale or not. Having a separate file that tracks some meta-
data about downloaded files will allow us to manage the
cache so that the user does not need to worry about running
out of disk space. To handle the problem of locating the
file, the filesystem directory structure that will be on the
user’s local machine will mirror that of the server, which
allows for a quick check for file existence to determine
whether the file needs to be downloaded or not.

4 Virtual Field Tests
4.1 The Costs Behind Field Tests
 Prior to launch of a Mars surface mission, a series of
readiness tests must be performed in order to demonstrate
the operability of the technologies used. In addition,
science and engineering teams need to be trained in the
tools and technologies that will be supporting the mission.
Realistic field tests are conducted to address these needs
involving a team of engineers who deploy a research-class
or flight-prototype rover to an area similar to Martian
terrain (e.g. Mojave Desert) to support remote science
operations.

 Performing field tests significantly increases the cost
of a mission primarily because it requires a large effort to
transport and sustain the necessary team and equipment at
the test site. Additionally, these tests need to be conducted
many times for months or years as each test generates new
results, and as new technologies and operations techniques
are tested and validated. More training opportunities are
also needed as the size of the science team for a mission
grows incrementally over the course of years.

4.2 The “Field Test in a Box”
 Virtual field tests provide a way to dramatically
reduce the costs of these actual field tests to a particular
mission. Offering a "Field Test in a Box" experience that
can be setup at any facility, the virtual field test can be used
as a low-cost way to educate and train scientists and
engineers or to demonstrate some aspects of operational
readiness. It does not carry the large financial and logistical
overhead of an actual field test. Of course, virtual field
tests serve only as a complement to actual field tests since
the need for field tests with actual hardware in a real
environment is inescapable. However, the virtual test will

provide a “jump-start” for scientists and engineers,
enabling them to reduce the number of iterations out in the
field both during training or technology demonstrations.

4.3 RoverWare Architecture
 RoverWare is an end-to-end virtual field test system
that represents the integration of three existing JPL
technologies:

1. Maestro – The scientist’s user interface for downlink
analysis and science plan specification.

2. CLARAty (Coupled Layer Architecture for Robotic
Autonomy) – a reusable software architecture that provides
an extensive library of robotic functionality that simplifies
the integration of new technologies onto robotic platforms
[3].

3. ROAMS (Rover Analysis, Modeling and Simulation – a
physics-based simulation tool for analysis, design,
development, test, and operation of rover on planetary
surface exploration missions [4].

 These three technologies are integrated as shown in
Figure 4.

Figure 4. RoverWare integration diagram

4.4 RoverWare Description
 Maestro enables users to determine what rover actions
they would like to perform next based on the data gathered
from the rover through a graphical interface. Users can
specify a plan of action through the high-level rover
command interface. These commands range from
movement commands (DriveToLocation, DriveForward,
ChangeHeading), to imaging commands on the available
cameras (AcquireImage), and instrument deployment
(StowMast, UnstowMast, ManipulatorMove). Different
sets of rover interface commands can be specified
depending on the functional capabilities of the rover to be

Maestro
Science Planner

CLARAty
Rover Control

ROAMS
Rover Simulation

 Science plan

 Rover commands

Result data/images

Result data/images

simulated.
The activity plan is then translated into set of high-level
commands that are sent to CLARAty, where the actual
low-level rover commands are issued to the (simulated)
rover hardware. CLARAty’s main purpose at this point is
to determine how to control the rover based on the rover
interface commands. Depending on the technology
integrated into the simulated rover, CLARAty has the
option to utilize some of its technologies in its mapping
from high-level to low-level commands. For example, a
simple DriveToLocation command could just be a straight-
line drive to the given coordinate. However, CLARAty can
also use a variety of obstacle avoidance algorithms to
navigate the rover through an obstacle field to the
coordinate. From the high-level planning perspective, when
the user wants the rover to move to the target, it is the job
of CLARAty to get the rover there based using its onboard
navigation capabilities.

 CLARAty feeds the set of low-level hardware
commands it needs in order to achieve its goals to the
ROAMS simulation. Based on physical models of the rover
and the terrain, ROAMS simulates the dynamics of the
rover as if it was executing on real terrain, taking into
account physical factors such as coefficients of friction on
differing terrains and how rock obstacles affect the wheel
chassis. Using a 3D graphics interface called DSpace,
ROAMS will display the simulated rover behavior in the
given environment to the user (see Figure 5).

Figure 5. ROAMS "DSpace" view of a simulated rover.

 In order to close the loop, ROAMS reports back to
CLARAty the success or failure status of individual
commands. Based on the algorithm used, CLARAty may
choose to re-issue a different command on failure. Also,
some high-level rover interface commands may require a
product to be returned back to Maestro, such as an
AcquireImage command to the Hazcams. It is also the
responsibility of CLARAty to package the data product up
and send it to Maestro so that it can be processed and
analyzed by the scientist users.

5 Ensemble and Agile Development
 Ensemble is an open architecture for the
development, integration, and deployment of mission
operations software. Fundamentally, it is an adaptation of
the Eclipse Rich Client Platform (RCP), a widespread,
stable, and supported framework for component-based
application development. By capitalizing on the maturity
and availability of the Eclipse RCP, Ensemble offers a low-
risk, politically neutral path towards a tighter integration of
operations tools.

5.1 Improving Mission Tool Development
 The current approach used to develop mission
operations software has produced a set of powerful tools
that have enabled stunning successes for NASA. Many
parts of the current development process are functioning
well and should be preserved. However, improvements in
the state of the art in software engineering as well as
increasing demands from new missions have exposed
several areas that deserve attention. The problems that
Ensemble has been designed to address are outlined below.

5.1.1 Brittle Interfaces
 Historically, mission operations software has
consisted of a set of largely independent tools that
communicate with each other using files or socket-based
interfaces. The interfaces between the planning tools on
MER were a late addition that became the source of
numerous problems. Several lessons-learned workshops
from MER have identified these interfaces as an area that
requires immediate improvement.

 File and socket-based interfaces are notoriously
difficult to test and debug. As a result, these kinds of
interfaces tend to fail often. The most reliable interface
between two tools is usually accomplished via direct use of
the respective tools' application programming interface
(API). The Ensemble approach ensures that many problems
in the interface are discovered at compile time.

5.1.2 Too Many GUIs
 The number of separate tools used in the MER
Activity Planning and Sequencing Subsystem (APSS) is
also the source of a popular complaint because it requires
mission operators to interact with many different user
interfaces in order to get their work done. This slows the
overall pace of mission operations and increases training
requirements.

 The complexity of mission operations makes it
infeasible to develop a single operations tool capable of
accomplishing all necessary tasks. However, Ensemble's

reliance on Eclipse provides a common GUI framework
that can contain GUI components from multiple tools
developed by different teams. A mission can then easily
reuse any component at multiple stages of the operations
process. For instance, a data view that was historically
available only during the sequencing phase of operations
can be displayed and used at any time if that view is
developed as an Eclipse plug-in. The result is a GUI that
feels like a single tool to the user, but draws upon the
resources of many development teams.

5.1.3 Duplication of Effort
 The tools in existing mission operations systems are
designed to address the needs of a certain phase of the
operations process. One tool is designed to accomplish
science planning while another is used for command
sequencing. However, certain capabilities are needed at
multiple stages in the operations process. Unfortunately,
the architectures used in current mission operations tools
do not allow capabilities from different tools to be reused
at multiple steps in the process. As a result, redundant
versions of these capabilities are developed by multiple
teams and inserted into separate tools.

 This reuse is possible because of the manner in which
Ensemble plug-ins deal with the spacecraft plan. In the
past, the spacecraft plan has been handed from one tool to
the next in a serial fashion. At each step, a single tool had
exclusive control over the plan. In contrast, Ensemble plug-
ins interact as a group with a common model of an
evolving spacecraft plan. Each plug-in can contribute to the
plan whenever it is necessary, and each plug-in must
respond appropriately to modifications made by other plug-
ins.

5.1.4 Lack of Agility
 Most development teams strive to make their tool
applicable to multiple missions. This is a positive goal
because it enables future missions to capitalize on the
investment made by prior missions. However, it can also
force a mission to accept and maintain capabilities that it
doesn’t need. The popular “core/adaptation” model is an
attempt to insulate different customers from customer-
specific requirements, but what if one customer only needs
a fraction of the core? Currently, that customer is simply
forced to accept the rest of the core anyway, along with the
risk and costs associated with its maintenance.

 As a multi-mission architecture, Ensemble also
supports extensive reuse of components between missions.
The vast majority of Ensemble plug-ins are mission-
independent, and mission-specific plug-ins are clearly
identified. Ensemble is already being used to support
Phoenix, Mars Science Laboratory (MSL), and several

technology programs, and these customers share a large
amount of code in common.

5.2 Agile Development

 SAP for MER was built by a small team of
developers writing code mostly in isolation. Group
meetings were convened only when pertinent issues arose
regarding the overall system architecture or an API needed
to be designed between components. This approach led to a
system where each developer was an expert regarding one
specific area of the system but relatively naive regarding
other system components. Furthermore, it hindered the
ability to perform integration tests on a frequent basis.

 In developing the next generation mission operations
software, the Maestro team shares a lab with three
workstations configured to optimize the experience of pair
programming (i.e. two monitors, two keyboards, and two
mice per workstation). The lab environment along with the
co-development of production code has greatly increased
inter-team communication as well as transferred
knowledge of the entire code base across all team
members. Furthermore, through an adaptation of the twelve
tenants of extreme programming, the Maestro team is able
to remain responsive to all its customer needs – ranging
from class-A missions to individual researchers.

Acknowledgements
The research described in this paper was carried out at the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration.

References
[1] Norris, Jeffrey S., Powell, Mark W., Vona, Marsette
A., Backes, Paul G., Wick, Justin V., "Mars Exploration
Rover Operations with the Science Activity Planner".
Proc. IEEE Conf. on Robotics and Automation, Apr. 2005.

[2] Justin V. Wick, John L. Callas, Jeffrey S. Norris,
Mark W. Powell, Marsette A. Vona, III, “Distributed
Operations for the Mars Exploration Rover Mission with
the Science Activity Planner.” Proc. 2005 IEEE Aerospace
Conf., Mar. 2005

[3] R. Volpe, I.A.D. Nesnas, T. Estlin, D. Mutz, R.
Petras, H. Das, "The CLARAty Architecture for Robotic
Autonomy." Proc. 2001 IEEE Aerospace Conf., Mar. 2001.

[4] A. Jain, J. Guineau, C. Lim, W. Lincoln, M.
Pomerantz, G. Sohl, R. Steele, "Roams: Planetary Surface
Rover Simulation Environment," Intl. Symp. on Artificial
Intelligence, Robotics and Automation in Space (i-
SAIRAS), May 2003.

	The Science Activity Planner
	Downlink Analysis
	Activity Plan Creation
	Simulation
	Building on SAP: Maestro

	Geographic Information Systems
	Spatial Indexing
	Spatial Databases
	User Interface

	Distributed Operations
	Distributed Planning
	Remote Data Access

	Virtual Field Tests
	The Costs Behind Field Tests
	The “Field Test in a Box”
	RoverWare Architecture
	RoverWare Description

	Ensemble and Agile Development
	Improving Mission Tool Development
	Brittle Interfaces
	Too Many GUIs
	Duplication of Effort
	Lack of Agility

	Agile Development

	Acknowledgements
	References

